ZAMA

Improved Programmable Bootstrapping with Larger Precision and Efficient **Arithmetic Circuits for TFHE**

Ilaria Chillotti

ilaria.chillotti@zama.ai

Damien Ligier damien.ligier@zama.ai

Jean-Baptiste Orfila jb.orfila@zama.ai

Samuel Tap

samuel.tap@zama.ai

Overview

1. TFHE Scheme Overview

2. PBS Many LUTs

3. BFV Product in TFHE

4. WoP-PBS

5. Challenges & Conclusion

Overview

1. TFHE Scheme Overview 2. PBS Many LUTs 3. BFV Product in TFHE 4. WoP-PBS

5. Challenges & Conclusion

What is FHE?

Computations over Encrypted Messages!

Possibly any function

• Possibly any type: bit, integer, real messages...

Noise Growth

too much noise $\bigotimes \implies$ incorrect decryption \bigotimes

Bootstrapping in TFHE

Refresh the ciphertext with less noise

[CGGI20] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. TFHE: Fast Fully Homomorphic Encryption over the Torus. Journal of Cryptology 2020.

Bootstrapping in TFHE

... and can evaluate a Lookup Table (LUT)!

[CGGI20] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. TFHE: Fast Fully Homomorphic Encryption over the Torus. Journal of Cryptology 2020.

Ciphertexts in TFHE:

Easy homomorphic addition & integer multiplication!

Ciphertexts in TFHE:

RLWE Solution Constant multiplication

(External) Product:

RGSW Addition Constant multiplication Multiplication

Inputs:

Output:

1 lookup-table

[L[0], ..., L[p - 1]]

1 bootstrapping key

Idea: homomorphically evaluate the decryption algorithm

$$\cdot \underbrace{L[m]} \cdots \underbrace{L[p-1]} \cdots \underbrace{L[p-1]} \underbrace{-L[0]} \cdots$$

Our Contributions:

(some of them)

n lookup-table: $\begin{bmatrix} L_1[0], \dots, L_1[p-1] \\ \vdots \\ L_n[0], \dots, L_n[p-1] \end{bmatrix}$

 $C_1 \boxtimes C_2$

Overview

1. TFHE Scheme Overview

2. PBS Many LUTs

3. BFV Product in TFHE

4. WoP-PBS

6. Challenges & Conclusion

Generalized Bootstrapping

Generalized Bootstrapping

Right Padding

Generalized Bootstrapping

N, \varkappa and ϑ defines the frame:

PBS Many LUTs

 \approx Select the m^{th} LUT case

$1 \text{ PBS} \leftrightarrow 1 \text{ LUT}$

PBS Many LUTs 1 Generalized PBS ↔ Many LUTs

2 lookup-tables: $[L_0[0], ..., L_0[p-1]]$

 $[L_1[0], ..., L_1[p-1]]$

PBS Many LUTs 1 Generalized PBS ↔ Many LUTs

2 lookup-tables: $[L_0[0], ..., L_0[p-1]]$

 $[L_1[0], ..., L_1[p-1]]$

Sample Extract

PBS Many LUTs 1 Generalized PBS ↔ Many LUTs

2 lookup-tables: $[L_0[0], ..., L_0[p-1]]$

 $[L_1[0], ..., L_1[p-1]]$

PBS Many LUTs

Multiple Instructions, Single Data (MISD) \Rightarrow For a cost \approx 1 PBS, evaluation of 2^{ϑ} functions on the same input

Require small messages *m*

Recap

Higher $\vartheta \Rightarrow$ more error

Overview

1. TFHE Scheme Overview

2. PBS Many LUTs

3. BFV Product in TFHE

4. WoP-PBS

6. Challenges & Conclusion

RLWE Product a la B/FV

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. CRYPTO 2012. [FV12] J. Fan, F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012.

RLWE Product a la B/FV

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. CRYPTO 2012. [FV12] J. Fan, F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012.

RLWE Product a la B/FV

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. CRYPTO 2012. [FV12] J. Fan, F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012.

Tight Noise Formulas

$$\begin{aligned} \mathsf{Var}(\mathsf{Mult}) &= \frac{N}{\Delta^2} \Big(\Delta_1^2 ||M_1||_{\infty}^2 \sigma_2^2 + \Delta_2^2 ||M_2||_{\infty}^2 \sigma_1^2 + \sigma_1^2 \sigma_2^2 \Big) + \\ &+ \frac{N}{\Delta^2} \left(\frac{q^2 - 1}{12} \Big(1 + kN \mathsf{Var}(S) + kN \mathbb{E}^2(S) \Big) + \frac{kN}{4} \mathsf{Var}(S) + \frac{1}{4} (1 + kN \mathbb{E}(S))^2 \right) (\sigma_1^2 + \sigma_2^2) + \\ &+ \frac{1}{12} + \frac{kN}{12\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\mathsf{Var}(S) + \mathbb{E}^2(S) \Big) + 3 \cdot \mathsf{Var}(S) \Big) + \frac{k(k - 1)N}{24\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\mathsf{Var}(S'') + \mathbb{E}^2(S'') \Big) + 3 \cdot \mathsf{Var}(S'') \Big) \\ &+ \frac{kN}{24\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\mathsf{Var}(S'_{\mathsf{odd}}) + \mathsf{Var}(S'_{\mathsf{even}}) + 2 \cdot \mathbb{E}^2(S'_{\mathsf{mean}}) \Big) + 3 \cdot \Big(\mathsf{Var}(S'_{\mathsf{odd}}) + \mathsf{Var}(S'_{\mathsf{even}}) \Big) \Big) + \\ &+ k\ell N \sigma_{\mathsf{RLK}}^2 \cdot \frac{(k + 1)}{2} \cdot \frac{\mathfrak{B}^2 + 2}{12} + \frac{kN}{8} \cdot \Big((k - 1) \cdot \mathsf{Var}(S'') + \mathsf{Var}(S'_{\mathsf{odd}}) + \mathsf{Var}(S'_{\mathsf{even}}) \Big) + \\ &+ \frac{kN}{2} \left(\frac{q^2}{12\mathfrak{B}^2 \ell} - \frac{1}{12} \right) \Big((k - 1) \cdot (\mathsf{Var}(S'') + \mathbb{E}^2(S''_{\mathsf{mean}})) + \mathsf{Var}(S'_{\mathsf{odd}}) + \mathsf{Var}(S'_{\mathsf{even}}) + 2\mathbb{E}^2(S'_{\mathsf{mean}}) \Big) + \end{aligned}$$

Tight Noise Formulas

$$\begin{aligned} \mathsf{Var}(\mathsf{Mult}) &= \frac{N}{\Delta^2} \Big(\Delta_1^2 ||M_1||_{\infty}^2 \sigma_2^2 + \Delta_2^2 ||M_2||_{\infty}^2 \sigma_1^2 + \sigma_1^2 \sigma_2^2 \Big) + \\ &+ \frac{N}{\Delta^2} \Big(\frac{q^2 - 1}{12} \Big(1 + kN \mathsf{Var}(S) + kN \mathbb{E}^2(S) \Big) + \frac{kN}{4} \mathsf{Var}(S) + \frac{1}{4} (1 + kN \mathbb{E}(S))^2 \Big) (\sigma_1^2 + \sigma_2^2) + \\ &+ \frac{1}{12} + \frac{kN}{12\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\mathsf{Var}(S) + \mathbb{E}^2(S) \Big) + 3 \cdot \mathsf{Var}(S) \Big) + \frac{k(k - 1)N}{24\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\mathsf{Var}(S'') + \mathbb{E}^2(S'') \Big) + 3 \cdot \mathsf{Var}(S'') \Big) \\ &+ \frac{kN}{24\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\mathsf{Var}(S'_{\text{odd}}) + \mathsf{Var}(S'_{\text{even}}) + 2 \cdot \mathbb{E}^2(S'_{\text{mean}}) \Big) + 3 \cdot \Big(\mathsf{Var}(S'_{\text{odd}}) + \mathsf{Var}(S'_{\text{even}}) \Big) \Big) + \\ &+ k\ell N \sigma_{\mathsf{RLK}}^2 \cdot \frac{(k + 1)}{2} \cdot \frac{\mathfrak{B}^2 + 2}{12} + \frac{kN}{8} \cdot \Big((k - 1) \cdot \mathsf{Var}(S'') + \mathsf{Var}(S'_{\text{odd}}) + \mathsf{Var}(S'_{\text{even}}) \Big) + \\ &+ \frac{kN}{2} \Big(\frac{q^2}{12\mathfrak{B}^2\ell} - \frac{1}{12} \Big) \Big((k - 1) \cdot (\mathsf{Var}(S'') + \mathbb{E}^2(S''_{\text{mean}})) + \mathsf{Var}(S'_{\text{odd}}) + \mathsf{Var}(S'_{\text{even}}) + 2\mathbb{E}^2(S'_{\text{mean}}) \Big) + \end{aligned}$$

Tight Noise Formulas

$$\begin{aligned} \text{Var}(\mathsf{Mult}) &= \frac{N}{\Delta^2} \Big(\Delta_1^2 ||M_1||_{\infty}^2 \sigma_2^2 + \Delta_2^2 ||M_2||_{\infty}^2 \sigma_1^2 + \sigma_1^2 \sigma_2^2 \Big) + \\ &+ \frac{N}{\Delta^2} \Big(\frac{q^2 - 1}{12} \Big(1 + kN \text{Var}(S) + kN \mathbb{E}^2(S) \Big) + \frac{kN}{4} \text{Var}(S) + \frac{1}{4} (1 + kN \mathbb{E}(S))^2 \Big) (\sigma_1^2 + \sigma_2^2) + \\ &+ \frac{1}{12} + \frac{kN}{12\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\text{Var}(S) + \mathbb{E}^2(S) \Big) + 3 \cdot \text{Var}(S) \Big) + \frac{k(k - 1)N}{24\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\text{Var}(S'') + \mathbb{E}^2(S'') \Big) + 3 \cdot \text{Var}(S'') \Big) \\ &+ \frac{kN}{24\Delta^2} \cdot \Big((\Delta^2 - 1) \cdot \Big(\text{Var}(S'_{\text{odd}}) + \text{Var}(S'_{\text{even}}) + 2 \cdot \mathbb{E}^2(S'_{\text{mean}}) \Big) + 3 \cdot \Big(\text{Var}(S'_{\text{odd}}) + \text{Var}(S'_{\text{even}}) \Big) \Big) + \\ &+ k\ell N \sigma_{\mathsf{RLK}}^2 \cdot \frac{(k + 1)}{2} \cdot \frac{\mathfrak{B}^2 + 2}{12} + \frac{kN}{8} \cdot \Big((k - 1) \cdot \text{Var}(S'') + \mathbb{Var}(S'_{\text{odd}}) + \mathbb{Var}(S'_{\text{even}}) \Big) + \\ &+ \frac{kN}{2} \Big(\frac{q^2}{12\mathfrak{B}^{2\ell}} - \frac{1}{12} \Big) \Big((k - 1) \cdot (\mathbb{Var}(S'') + \mathbb{E}^2(S''_{\text{mean}})) + \mathbb{Var}(S'_{\text{odd}}) + \mathbb{Var}(S'_{\text{even}}) + 2\mathbb{E}^2(S''_{\text{mean}}) \Big) + \end{aligned}$$

Precision	1	2	3	4	5	6	7	8		14	15	16	17	18	19	20	21	22	23	24
Max. depth	32	16	16	8	8	8	8	4		2	2	2	2	2	2	2	2	2	2	2
$\log_2(N)$	12	11	12	11	11	12	12	11	• • •	11	11	11	11	11	11	11	12	12	12	12
$\log_2(\mathfrak{B})$	8	5	8	12	10	8	8	20		30	30	20	20	20	20	20	20	20	20	20
l	8	10	8	4	5	8	8	2		1	1	2	2	2	2	2	2	2	2	2

LWE Product Inside TFHE

LWE Product Inside TFHE

LWE Product Inside TFHE

Overview

TFHE Scheme Overview
PBS Many LUTs
BFV Product in TFHE

4. WoP-PBS

6. Challenges & Conclusion

-L[0]. . .

Random bit

PBS without padding

Random bit

PBS without padding

Random bit

PBS without padding

PBS without padding

• • •

[CIM19] S. Carpov, M. Izabachène, V. Mollimard. New Techniques for Multi-value Input Homomorphic Evaluation and Applications. CT-RSA 2019.

PBS without padding

PBS without padding

• • •

PBS without padding

PBS without padding

PBS without padding

Sequential complexity for a *p*-bit message

Parallel complexity for a *p*-bit message

Easy to parallelize!

Overview

TFHE Scheme Overview
PBS Many LUTs
BFV Product in TFHE
WoP-PBS

6. Challenges & Conclusion

Conclusion

In this presentation

- **BFV-like Multiplication in TFHE**
- Evaluate several LUTs at once: **PBS Many LUT**
- Bootstrapping Without Padding: WoP-PBS₁ and WoP-PBS₂

Our contributions

More in the paper

- Generic tight noise analysis
- Efficient Circuit Bootstrapping
- Efficient ciphertext splitting in chunks.
 - **Large Precision PBS**
- Efficient Gate Bootstrapping approach and extension to arithmetic circuits

Open Problems

Fast FFT with higher precision

- Reduce noise growth in WoP-PBS

Experiment with hardware implementations

Improve LWE —> GLWE Key Switching

Ilaria Chillotti Damien Ligier ilaria.chillotti@zama.ai damien.ligier@zama.ai

Jean-Baptiste Orfila

jb.orfila@zama.ai

Samuel Tap

samuel.tap@zama.ai

